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The inhomogeneous electron cloud in atomic ions ‘confined’ in hot plasmas and subjected to high static 
electric fields is studied, because of a body of experimental data on multiphoton ionization. In particular, 
the canonical (Bloch) density matrix is obtained in closed form for independent electrons moving in a 
static electric field of arbitrary strength and confined by a harmonic oscillator potential. To bring the 
model into contact with atoms in plasmas, the oscillator force constant is connected with the plasma 
density. For non-degenerate electrons an ‘atomic’ potential is included, by means of the Thomas-Fermi 
(TF) method. In an Appendix, a fully non-local theory is then developed which transcends this TF 
approximation. Simple numerical examples are presented for realistic values of field, temperature and 
plasma density. 

KEY WORDS: Dilute plasmas, Strong electric field, Inhomogeneous electron cloud. 

1 INTRODUCTION 

Recently, the Thomas-Fermi method has been used, together with some refinements, 
to discuss atoms in cold dense plasmas’. The present paper is in a related area, 
though the emphasis now is on atomic ions ‘confined’ in hot plasmas, and subjected 
to high static electric fields. Various models already exist’; the long-term aim must 
be to bring such models into contact with a body of experimental data on multi- 
photon ionization. Characteristic of such experiments are (i) low ionic densities and 
(ii) strong electric fields. 

The present work has been motivated, in part, by the very recent study of Brewczyk 
and Gajda3, who applied the Thomas-Fermi (TF) method to such systems. One of 
us4 has subsequently used the same approach to study numerically the dependence 
of the self-consistent atomic potential on electric field. 
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The aim of the present investigation may be summarized as follows: 

i) To present a soluble model for a confined assembly of independent electrons 
subjected to a static electric field of arbitrary strength E. The confinement is achieved 
by imposing a harmonic restoring force, in addition to the electric field. 

ii) To relate to atomic ions in hot, non-degenerate plasma. 

The outline of the paper is a presentation first in section 2 of the solution of the 
Bloch equation for the canonical density matrix C(r, ro, p, E, w )  for independent 
electrons in a constant electric field E, with harmonic restoring force corresponding 
to an oscillator angular frequency w. Here /3 is the reciprocal of the thermal energy 
k,T. In the first part of section 2, the electric field is taken as the z axis. Then this 
solution is readily generalized to include harmonic restoring forces also in the x and 
y directions. 

Section 3 is then concerned with relating the above model to atomic ions in a hot, 
non-degenerate plasma in an external electric field. The first step is to add an 
‘atom-like’ potential V(r) to the model solved in Section 2. Strictly V(r) should be 
calculated self-consistently as a function of p, E and the plasma density. While this 
is not attempted here, a model potential V(r) is incorporated into the treatment of 
Section 2 by the T F  approximation. l h e  second step is to connect the strength of the 
harmonic potential with the plasma density. 

Section 4 presents some typical numerical examples, for realistic values of field, 
temperature and plasma density. A summary, with some suggestions for future work, 
concludes the body of the paper. However, in a substantial Appendix, a non-local 
theory is developed, for non-degenerate electrons moving in a model potential V(r), 
which transcends the T F  approximation. 

2 SOLUTION OF BLOCH EQUATION FOR CANONICAL DENSITY 
MATRIX FOR HARMONIC FORCE CONFINEMENT 
AND IN STATIC ELECTRIC FIELD 

The starting point of this study is to assume that independent electrons move in a 
static electric field of arbitrary strength E, added to which is a confining harmonic 
oscillator potential, corresponding to angular frequency w. The method employed is 
then to construct the canonical density matrix C(r,ro,p, E,w), by solution of the 
Bloch equation 

From the definition of C in terms of the one-electron wavefunctions I(/i(r) of the 
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ATOMS IN DILUTE PLASMAS IN ELECTRIC FIELDS 81 

Hamiltonian I?, and the corresponding eigenvalues ci ,  namely 

it follows from the completeness theorem for eigenfunctions that C must satisfy 
the ‘boundary’ condition 

The rest of this section is devoted to solving Eq. (2.1), with condition (2.3) for 
H = I?, - eEz+ harmonic conjining potential energy. Here H, is the free particle 
Hamiltonian -R2/2mV2. In atomic units (e  = 1, m = 1, R = l), the canonical density 
matrix for free particles, satisfying Eqs. (2.1) and (2.3) with fi replaced by I?, is 

Evidently, the solution of the model problem posed above must reduce to Eq. (2.4) 
when E = 0 and when the harmonic restoring force is switched off. Let us immediately 
exploit the form (2.4) which is a product of x, y and z terms having the structure 

for the case when the harmonic restoring force, represented by potential energy 
imw2z2, confines electrons only along the field direction, namely the z axis. 

2.1 

Motivated by the form (2.4), one can write, since the motion in x and y directions 
is unaffected: 

ConJining harmonic force only along Jield direction 

C(r, r,,, 8, E, o) = - (’ - yo)z)Cz(z,  z,,, 8, E, w). (2.5) 
28 

Evidently the differential equation for C, on the right-hand side (2.5) can be readily 
obtained. The point to be stressed is that the potential terms in the Hamiltonian 
can be rearranged as 
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82 C. AMOVILLI, N. H. MARCH A N D  S. PFALZNER 

Thus, one has to deal with a harmonic oscillator with a shift of origin proportional 
to electric field. Using the study of Stephen and Zalewskis, following the earlier work 
of Sondheimer and Wilson’ on the free electron diamagnetism, one can show after 
some calculation that the form of C on the right-hand side of Eq. (2.5) is 

x exp( - f tanh($)(z + zo - $>’ - coth($)(z - zJ2) 

x exp(’). 

If the limit o + 0 is taken in Eq. (2.7) and the result is inserted into Eq. (2.5) 
then one obtains 

c,,, = ___ exp( - ~ lr - ro12 + - PE (z + zo) + __ ”E‘) (2.8) 
1 

(2.rrp)312 2P 2 24 

which was given earlier by Harris and Cina’. It can be directly verified by insertion 
of Eqs. (2.7) and (2.8) into the appropriate forms Bloch Eq. (2.1) that they are solutions, 
and the limit f i  + 0 in each is readily shown to satisfy Eq. (2.3). 

Plots will be given below, in section 4, of C, in Eq. (2.7) on the diagonal zo = z 
for realistic values of P, E and o, the last of these being connected with the plasma 
density in Section 3 below. However, before turning to that, the interest in atomic 
ions confined in plasma means that the electronic motion should be confined also 
in the x and y directions. Since there is axial symmetry around the field direction, 
this necessitates the introduction of only one further force constant or equivalently 
a further frequency which will be denoted by wl  . 

2.2 

Using the results of Refs [4) and [ S ] ,  it is a straightforward matter to introduce the 
new potential energy contribution 4rno$(x2 + y2) into the free-particle terms in x 
and y on the right-hand side of Eq. (2.5). Then the new form of Eq. (2.5) reads 

Additional harmonic force conjinement in s and J’ directions 

x exp( - 7 tanh( F ) ( s  + xo)2 - - 0 1  4 coth( $)(s - so).) 
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ATOMS IN DILUTE PLASMAS IN ELECTRIC FIELDS 83 

Again representative plots of Eq. (2.9) on the diagonal r = ro will be presented in 
Section 4. 

This is the point to turn to the way one now introduces the atomic ion, which is 
modelled through a suitable one-body potential V(r). In general, self-consistent 
determination of V(r) in a plasma will lead to the potential depending not only on 
r but also on temperature and electric field. Though such self-consistency is not 
attempted here, some discussion will be given in Section 4 of the regime where the 
field dependence of V(r) might be unimportant. 

3 INTRODUCTION OF MODEL POTENTIAL ENERGY V(r) 
REPRESENTING ATOMIC ION 

Let us now turn to the problem of switching on a model potential V(r) to the 
Hamiltonian used in Section 2. Denoting the canonical density matrix calculated 
there by C(O) = C( V = 0), the simplest approximation is to follow the ideas of the 
T F  method. Then, with slowly varying V(r) for which the assumptions of this 
approximation are valid, one can return to the definition (2.2), and simply move all 
eigenvalues ti by the same (almost constant-) amount V(r), the wavefunctions 
tji(r) being unaffected to the same order of approximation. Hence one can write 
for the diagonal form of the canonical density matrix 

It is relevant to the discussion of Section 2 to note that if V were simply the 
electric field term -eEz in Eq. (2.6) and this was switched on the free particle 
form (2.4), then the additional factor multiplying C(O) would be exp(PEz). This is 
precisely the factor present in the diagonal form of Eq. (2.8). However, potentials 
V(r) in atomic ions evidently have Coulomb singularities at nuclei, so that Eq. 
(3.1) is a less favourable approximation in this case than for the linear potential 
- eEz. 

3.1 Transcending Thomas-Fermi approximation 

As proposed by Hilton et d8,  one can contemplate generalizing the form (3.1) by 
writing 

C(r, P)  = C'O) exp[-PU(r, PI1 (3.2) 

where the so-called effective potential U now becomes a function of /3, even if the 
model potential V(r) is chosen to be independent on temperature. Hilton et al. propose 
then to calculate U to first-order only in V. To illustrate their results, if C(O) is replaced 
by the free-particle limit in zero field, then the first order term of U, say U , ,  can be 
written explicitly in the non local form 

(3.3) 
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where 
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In the Appendix, Eq. (3.3) is generalized to apply to switching V(r) on to the model 
problem of Section 2. If one restricts oneself here to Eq. (3.3), Hilton e f  al. plot Ul(r, p) 
for various cases: the Coulomb singularity at r = 0 is removed by the non-local form 
(3.3) for any finite 8. 

3.2 Connection of harmonic confining force constants and fiequencies with plasma 
density 

One application of the above described model is to the modelling of plasmas. In the 
statistical description of dense plasmas it is a common method to estimate the radius 
of the cell occupied per atom by dividing the volume by the number of particles 

where ni is the ion number density. In the case of harmonic confining forces, the 
radius of this cell can be set equal to the wavelength of the harmonic force. This 
boundary is, unlike that in the Thomas-Fermi model, a smooth well because of the 
harmonic potential. The advantage of this boundary is that the electrons are not 
totally fixed in their cell but some tunneling is allowed as well. So the connection 
between the frequency of the harmonic force and the plasma density is given by 

This definition of the force constant will be employed below in some illustrative 
examples. The division of the volume of the plasma into these small cells is best 
applicable in the case of dense plasmas. The model described above is restricted in 
the density range because of the assumption of a non-degenerate plasma, but using 
Ferm-Dirac statistics instead of Maxwell-Boltzmann the range of applicability of 
this approach could be widened to embrace very high densities (- loz3 particles per 
a). 

4 SIMPLE ILLUSTRATIVE EXAMPLES 

Here, some numerical examples will be presented. As far as possible, bearing in mind 
the limitations of the model, the examples are designed for conditions which can be 
achieved in laboratory experiments. However only non-degenerate plasmas will be 
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0 . a-. 

0.7 

0 .6- 

0.04' 0.08' 0.12, 0.16' 0,20' 
Temperature (keV1 

100 eV 

- I O P f  +zPTi5= 
Density ( p a r t  i c  les/ccl  

Figure 1 Variation of non-degenerate density C, in Eq. (2.7) with: (a) temperature at fixed density 10'' 
particles/cc; (b) density at the temperatures corresponding to kBT = 5, 10 and 100 eV. In the calculation 
z = z,, and z 4 E/wz. The equivalent laser flux is 10" Watt/m2. 
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86 C. AMOVILLI, N.  H. MARCH AND S. PFALZNER 

considered, this then implying the constraint that the ionic number density ni satisfies 

with Ze the charge of an ion. This delineates the region of classical plasmas. The 
most recent experiments have considered higher densities, where the effect of the 
degeneracy of the electrons becomes important. However in the context of multi- 
photon ionization relatively low density plasmas are normally investigated. The 
presently achievable laser flux is about 10l8 Watt/m2. The connection between the 
laser flux and the electric field is given by 

In the above calculation we assumed a static electric field. Brewczyk and Gajda3 
pointed out under what conditions this is a reasonable assumption. 

Figure 1 shows the temperature, density and electric field dependence as re- 
presented by Eq. (2.7). The behaviour of C, in the density and temperature region 
on which we focus is dominated by the temperature dependence which is - TI/’. The 
E-field and density dependence is the stronger the lower the temperature. The plot 
is for : = zo  and r substantially less than E / 0 2 .  Figure 2 similarly shows how the x 

O . O 1  
18 ;=lo W,’m2 

- 0 . 0 q  

3 

0.04 

1 eV 
0.01- 

+TFT7FP IOiV 1 
Density (particles/cc) 

Figure 2 Same as Figure l(b) but now for the x and y contributions to the non-degenerate density C from 
Eq. (2.9). and with different temperatures corresponding to k,T = 1, 5 and 10 eV. It should be noted that 
for k,T = t eV, C begins to decrease at densities of - 10’8-10’9 particles/cc. 
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ATOMS IN DILUTE PLASMAS IN ELECTRIC FIELDS 87 

and y contribute to C, namely how the ratio C/C,, from Eq. (2.9), depends on 
temperature and density. Here the temperature dependence is -T and again the 
density dependence is the stronger the lower the temperature. 

5 SUMMARY AND FUTURE DIRECTIONS 

In this paper, closed forms have been obtained for the canonical density matrix C 
for electrons moving in a static electric field E, and confined by a harmonic restoring 
force. Model potentials V(r) have then been ‘switched on’ to this above canonical 
density matrix via the T F  approximation (3.1). 

It would be of interest to apply the method of March and Murray’ to convert C, 
the electron density for non-degenerate electrons, into results applicable to inter- 
mediate degeneracy governed by Fermi-Dirac statistics. Unfortunately, without 
switching on the model potential V(r), this is already difficult to handle by purely 
analytical methods, as can be seen from the case of complete degeneracy for the 
harmonic oscillator alone in Refs [6] and [7]. No doubt, numerical procedures will 
eventually enable our present results to be transformed according to the route 
established in Ref. [ 9 ] .  

The same situation obtains when one attempts to remove the T F  approximation 
underlying Eq. (3.1). With C(O) instead of the free-particle C,, the generalization of 
the Green function Go in Eq. (3.3) is hard to effect analytically. Numerical presenta- 
tion will be difficult, because of the large number of variables involved. 

Nevertheless, it seems to us likely that the model treatment of atomic ions in hot, 
non-degenerate plasmas presented in this work, is well worth further study, the 
intermediate Fermi-Dirac degeneracy being of obvious importance. Under these 
conditions, an appropriate starting point to introduce the potential would be the 
elevated temperature Thomas-Fermi theory’O. 
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APPENDIX 

The approach of Hilton et a[.* can be generalized for any reference Hamiltonian for 
which the solution of the relevant Bloch equation is known. For a given Hamiltonian 

it is possible to find the solution of the Bloch equation for a perturbed Hamiltonian 

The procedure is to write 

where Co(r, r,, /?) satisfies the equation 

The effective potential matrix Ufr, ro, 8) satisfies the equation 

As in the approach of Hilton et a/ this differential equation in U can be transformed 
into an integral equation by using the Green function of the left-hand side operator 
in Eq. (AS). This Green function maintains the same form as for the solution of 
Hilton et a1 for the perturbed non-interacting free-electron system, namely 

but now C, is the solution of the Bloch Eq. (A.4) for the reference Hamiltonian (A.1). 
The corresponding integral Eq. to (AS)  is then 

When it is possible to neglect the term (#3’/2)l~VI’, Eq. (A.7) gives a direct route for 
calculating the “effective potential” U .  This linear response treatment can be applied 
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under the following conditions: (i) U small and much more slowly varying with r 
than V(r), especially in presence of Coulomb singularities, (ii) IVUl’ small, (iii) p 
small. Using Eq. (2.9) for C ,  in (A.6) and (A.7) it is not possible to give an analytical 
expression for U even in the linear response approximation and numerical procedures 
are required. When it is possible to make the assumption pw < 0.5 the p-convolution 
in Eq. (A.7) can be computed by approximating the hyperbolic functions of C ,  by 
the lowest order powers in Po. In the linear response approximation in V and in 
this high temperature regime, Eq. (A.7) takes the form, for the diagonal elements, 

w, P) = dr, m l ) G ( r ,  r1, B) (A.8) s 
where 

Po’ [(rl + r)2 - 4r2] - -(rl - r)’ Po2 -- 
8 24 

This reduces to the free-electron Green function when E = 0 and w = 0. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


